

Established in 2012, Space Engine Systems (SES) is a Canadian aerospace company that is pioneering the next generation of propulsion technologies for aerospace and space. Our goal is to power a reusable Single-Stage-To-Orbit (SSTO) vehicle for space applications. SES has conducted more than 2 decades of research which has led to development of multi-fuel propulsion systems, novel heat exchangers, high temperature gearboxes, nanotechnology, and custom bearings.

The DASS GNX engine is a combined-cycle engine utilizing various modes and fuels to optimize specific impulse (I_{sp}) over any given flight regime. It can reduce the overall fuel consumption, thus increasing the payload mass fraction.

Ramjet/Scramjet, Multi-fuel 32-km to 75-km

I_{SP} = 3,000 seconds Mode Speed = Mach 10

Turbojet with Afterburner

8-km to 12-km I_{SP} = 3,300 seconds Mode Speed = Mach 1.4

Rocket Mode

Above 75-km I_{SP} = 450 seconds

Turbo-Ramjet, Multi-fuel

12-km to 32-km I_{SP} = 3,410 seconds Mode Speed = Mach 4

Off-the-Shelf Turbojet

Sea Level to 8-km I_{SP} = 3,800 seconds Mode Speed = Mach 0.9

Low Earth Orbit (LEO) mission comparison.

		•	
Vehicle	SSTO using DASS GNX	Falcon 9 Block 5	Falcon 9 Block 5
Mode	100%	1 st Stage	Expendable
	Reusable	Recovered**	No recovery
Payload [kg]	18,800	16,400	22,800
Fuel Consumption [kg] Sea Level to 75 km	131,600	370,700	418,700
Fuel Consumption [kg] 75 to 400-km	341,300	111,500	111,500
Fuel Consumption [kg] Recovery	0	48,000	0
Total Take-off Weight [kg]	580,300	580,300	586,700

Payload capacity comparison at total take-off weight.

r agioda capacity companison at total take-off weight.					
Payload Capacity [kg]	SSTO using DASS GNX	Falcon 9 Block 5	Falcon 9 Block 5		
	100%	1 st Stage	Expendable		
	Reusable	Recovered	No recovery		
LEO	18,800	16,400	22,800		
GTO*	11,570	5,500	8,300		
Lunar* [TLI]**	9.390	3,370	5,690		
Mars* [TMI]**	8,330	2,190	4,080		

*Above 400-km, an SSTO vehicle with the DASS GNX releases payload(s) with a recoverable propulsion system for geosynchronous transfer orbit (GTO), trans-lunar injection (TLI) and trans-mars injection (TMI) missions.

HIGHLIGHTS

- 15% increase in payload mass fraction to LEO.
- 23% fuel reduction for equivalent LEO payloads.
- 179% increase in payload mass fraction for Lunar mission.
- 281% increase in payload mass fraction for Mars mission.
- Completely re-usable SSTO capabilities.
- Adaptable and scalable technology for variable missions.
- Off-the-shelf components with high life-cycle and reliability.
- Modular design with option of engaging rocket mode at a range of altitudes (45 – 75 km).
- Runway launch and landing capabilities.
- No need for pitchover maneuver.

^{**} Estimated.